Toward virtualizing branch direction prediction

  • Authors:
  • Maryam Sadooghi-Alvandi;Kaveh Aasaraai;Andreas Moshovos

  • Affiliations:
  • University of Toronto;University of Toronto;University of Toronto

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work introduces a new branch predictor design that increases the perceived predictor capacity without increasing its delay by using a large virtual second-level table allocated in the second-level caches. Virtualization is applied to a state-of-the-art multi-table branch predictor. We evaluate the design using instruction count as proxy for timing on a set of commercial workloads. For a predictor whose size is determined by access delay constraints, accuracy can be improved by 8.7%. Alternatively, the design can be used to achieve the same accuracy as a non-virtualized design while using 25% less dedicated storage.