Extensional Higher-Order Logic Programming

  • Authors:
  • Angelos Charalambidis;Konstantinos Handjopoulos;Panagiotis Rondogiannis;William W. Wadge

  • Affiliations:
  • University of Athens;University of Athens;University of Athens;University of Victoria

  • Venue:
  • ACM Transactions on Computational Logic (TOCL)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a purely extensional semantics for higher-order logic programming. In this semantics program predicates denote sets of ordered tuples, and two predicates are equal iff they are equal as sets. Moreover, every program has a unique minimum Herbrand model which is the greatest lower bound of all Herbrand models of the program and the least fixed-point of an immediate consequence operator. We also propose an SLD-resolution proof system which is proven sound and complete with respect to the minimum Herbrand model semantics. In other words, we provide a purely extensional theoretical framework for higher-order logic programming which generalizes the familiar theory of classical (first-order) logic programming.