Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model

  • Authors:
  • Yuwei Wu;Yuanquan Wang;Yunde Jia

  • Affiliations:
  • -;-;-

  • Venue:
  • Computer Vision and Image Understanding
  • Year:
  • 2013

Quantified Score

Hi-index 0.00



Segmentation of the left ventricle (LV) is a hot topic in cardiac magnetic resonance (MR) images analysis. In this paper, we present an automatic LV myocardial boundary segmentation method using the parametric active contour model (or snake model). By convolving the gradient map of an image, a fast external force named gradient vector convolution (GVC) is presented for the snake model. A circle-based energy is incorporated into the GVC snake model to extract the endocardium. With this prior constraint, the snake contour can conquer the unexpected local minimum stemming from artifacts and papillary muscle, etc. After the endocardium is detected, the original edge map around and within the endocardium is directly set to zero. This modified edge map is used to generate a new GVC force filed, which automatically pushes the snake contour directly to the epicardium by employing the endocardium result as initialization. Meanwhile, a novel shape-similarity based energy is proposed to prevent the snake contour from being strapped in faulty edges and to preserve weak boundaries. Both qualitative and quantitative evaluations on our dataset and the publicly available database (e.g. MICCAI 2009) demonstrate the good performance of our algorithm.