Context-aware nanoscale modeling of multicast multihop cellular networks

  • Authors:
  • Beatriz Lorenzo;Savo Glisic

  • Affiliations:
  • Centre for Wireless Communications, University of Oulu, Oulu, Finland;Department of Communications Engineering, University of Oulu, Oulu, Finland

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a new approach to optimization of multicast in multihop cellular networks. We apply a hexagonal tessellation for inner partitioning of the cell into smaller subcells of radius r. Subcells may be several orders of magnitude smaller than, e.g., microcells, resulting in what we refer to as a nanoscale network model (NSNM), including a special nanoscale channel model (NSCM) for this application. For such tessellation, a spatial interleaving SI MAC protocol is introduced for context-aware interlink interference management. The directed flooding routing protocol (DFRP) and interflooding network coding (IFNC) are proposed for such a network model including intercell flooding coordination (ICFC) protocol to minimize the intercell interference. By adjusting the radius of the subcell, r, we obtain different hopping ranges that directly affect the throughput, power consumption, and interference. With r as the optimization parameter, in this paper we jointly optimize scheduling, routing, and power control to obtain the optimum tradeoff between throughput, delay, and power consumption in multicast cellular networks. A set of numerical results demonstrates that the NSNM enables high-resolution optimization of the systemand an effective use of the context awareness.