Parallel design and performance of nested filtering factorization preconditioner

  • Authors:
  • Long Qu;Laura Grigori;Frédéric Nataf

  • Affiliations:
  • Université Paris Sud, Orsay, France;INRIA Paris-Rocquencourt, Alpines and UPMC - Univ Paris, Paris, France;UPMC - Univ Paris, Laboratoire Jacques-Louis Lions and INRIA, Alpines Paris, France

  • Venue:
  • SC '13 Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present the parallel design and performance of the nested filtering factorization preconditioner (NFF), which can be used for solving linear systems arising from the discretization of a system of PDEs on unstructured grids. NFF has limited memory requirements, and it is based on a two level recursive decomposition that exploits a nested block arrow structure of the input matrix, obtained priorly by using graph partitioning techniques. It also allows to preserve several directions of interest of the input matrix to alleviate the effect of low frequency modes on the convergence of iterative methods. For a boundary value problem with highly heterogeneous coefficients, discretized on three-dimensional grids with 64 millions unknowns and 447 millions nonzero entries, we show experimentally that NFF scales up to 2048 cores of Genci's Bull system (Curie), and it is up to 2.6 times faster than the domain decomposition preconditioner Restricted Additive Schwarz implemented in PETSc.