Understanding idiomatic traversals backwards and forwards

  • Authors:
  • Richard Bird;Jeremy Gibbons;Stefan Mehner;Janis Voigtländer;Tom Schrijvers

  • Affiliations:
  • University of Oxford, Oxford, United Kingdom;University of Oxford, Oxford, United Kingdom;Universität Bonn, Bonn, Germany;Universität Bonn, Bonn, Germany;Ghent University, Gent, Belgium

  • Venue:
  • Proceedings of the 2013 ACM SIGPLAN symposium on Haskell
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present new ways of reasoning about a particular class of effectful Haskell programs, namely those expressed as idiomatic traversals. Starting out with a specific problem about labelling and unlabelling binary trees, we extract a general inversion law, applicable to any monad, relating a traversal over the elements of an arbitrary traversable type to a traversal that goes in the opposite direction. This law can be invoked to show that, in a suitable sense, unlabelling is the inverse of labelling. The inversion law, as well as a number of other properties of idiomatic traversals, is a corollary of a more general theorem characterising traversable functors as finitary containers: an arbitrary traversable object can be decomposed uniquely into shape and contents, and traversal be understood in terms of those. Proof of the theorem involves the properties of traversal in a special idiom related to the free applicative functor.