Fast and scalable reachability queries on graphs by pruned labeling with landmarks and paths

  • Authors:
  • Yosuke Yano;Takuya Akiba;Yoichi Iwata;Yuichi Yoshida

  • Affiliations:
  • The University of Tokyo, Tokyo, Japan;The University of Tokyo, Tokyo, Japan;The University of Tokyo, Tokyo, Japan;National Institute of Informatics & Preferred Infrastructure, Inc., Tokyo, Japan

  • Venue:
  • Proceedings of the 22nd ACM international conference on Conference on information & knowledge management
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Answering reachability queries on directed graphs is ubiquitous in many applications involved with graph-shaped data as one of the most fundamental and important operations. However, it is still highly challenging to efficiently process them on large-scale graphs. Transitive-closure-based methods consume prohibitively large index space, and online-search-based methods answer queries too slowly. Labeling-based methods attain both small index size and query time, but previous indexing algorithms are not scalable at all for processing large graphs of the day. In this paper, we propose new labeling-based methods for reachability queries, referred to as pruned landmark labeling and pruned path labeling. They follow the frameworks of 2-hop cover and 3-hop cover, but their indexing algorithms are based on the recent notion of pruned labeling and improve the indexing time by several orders of magnitude, resulting in applicability to large graphs with tens of millions of vertices and edges. Our experimental results show that they attain remarkable trade-offs between fast query time, small index size and scalability, which previous methods have never been able to achieve. Furthermore, we also discuss the ingredients of the efficiency of our methods by a novel theoretical analysis based on the graph minor theory.