On the impact of network topology on wireless sensornetworks performances: illustration with geographic routing

  • Authors:
  • Tony Ducrocq;Michaël Hauspie;Nathalie Mitton

  • Affiliations:
  • Inria Lille - Nord Europe, Lille, France;Université Lille 1, Lille, France;Inria Lille - Nord Europe, Lille, France

  • Venue:
  • Proceedings of the 10th ACM symposium on Performance evaluation of wireless ad hoc, sensor, & ubiquitous networks
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless Sensor Networks (WSN) are composed of constrained devices and deployed in unattended and hostile environments. Most papers presenting solutions for WSN evaluate their work over random topologies to highlight some of their "good" performances. They rarely study these behaviors over more than one topology. Yet, the topology used can greatly impact the routing performances. This is what we demonstrate in this paper. We present a study of the impact of network topology on algorithms performance in Wireless Sensor Networks and illustrate it with geographic routing. Geographic routing is a family of routing algorithms using nodes coordinates to route data packet from source to destination. We measure the impact of different network topologies from realistic ones to regular and unrealistic ones through extensive simulations. Studied algorithms are common geographic greedy algorithms with different heuristics from the literature. We show that different topologies can lead to a difference of up to 25% on delivery ratio and average route length and more than 100% on overall cost of transmissions.