Performance evaluation of wireless sensor networks in realistic wildfire simulation scenarios

  • Authors:
  • Sinan Isik;Mehmet Yunus Donmez;Can Tunca;Cem Ersoy

  • Affiliations:
  • Bogazici University, Istanbul, Turkey;Bogazici University, Istanbul, Turkey;Bogazici University, Istanbul, Turkey;Bogazici University, Istanbul, Turkey

  • Venue:
  • Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Forest fires lead to high amount of environmental and economic loss all over the world. Prevention and early detection efforts aim to eliminate or minimize the damage that will be caused by a fire incident. Current surveillance systems for forest fires do not provide dense real-time monitoring and hence they lack prevention or early detection of a fire threat. Wireless sensor networks (WSNs), on the other hand, can collect real-time information such as temperature and humidity from almost all points of a forest and can provide fresh and accurate data for the fire-fighting management center quickly. In this work, we aim to evaluate the reporting performance of a WSN under realistic workload. Since fires are destructive and burning a deployed WSN is not feasible, simulation is the appropriate way to assess the reporting capability of a WSN during a forest fire. We integrate WSN simulator with a realistic fire propagation simulator which is modified to provide time based temperature field information while the fire propagates through the deployment area. Temperature information is used for the generation of realistic workloads and the determination of sensor destruction times that affects the routing decisions in WSN simulations. We present the effects of WSN related factors; such as reporting rate, number of the sinks, and the sink locations together with the effects of environmental factors such as the wind speed and the number of ignition points in terms of temperature reporting performance and freshness of temperature map.