Ironclad C++: a library-augmented type-safe subset of c++

  • Authors:
  • Christian DeLozier;Richard Eisenberg;Santosh Nagarakatte;Peter-Michael Osera;Milo M.K. Martin;Steve Zdancewic

  • Affiliations:
  • University of Pennsylvania, Philadelphia, PA, USA;University of Pennsylvania, Philadelphia, PA, USA;Rutgers University, New Brunswick, NJ, USA;University of Pennsylvania, Philadelphia, PA, USA;University of Pennsylvania, Philadelphia, PA, USA;University of Pennsylvania, Philadelphia, PA, USA

  • Venue:
  • Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The C++ programming language remains widely used, despite inheriting many unsafe features from C---features that often lead to failures of type or memory safety that manifest as buffer overflows, use-after-free vulnerabilities, or abstraction violations. Malicious attackers can exploit such violations to compromise application and system security. This paper introduces Ironclad C++, an approach to bringing the benefits of type and memory safety to C++. Ironclad C++ is, in essence, a library-augmented, type-safe subset of C++. All Ironclad C++ programs are valid C++ programs that can be compiled using standard, off-the-shelf C++ compilers. However, not all valid C++ programs are valid Ironclad C++ programs: a syntactic source-code validator statically prevents the use of unsafe C++ features. To enforce safety properties that are difficult to check statically, Ironclad C++ applies dynamic checks via templated ``smart pointer'' classes. Using a semi-automatic refactoring tool, we have ported nearly 50K lines of code to Ironclad C++. These benchmarks incur a performance overhead of 12% on average, compared to the original unsafe C++ code.