Fully-Connected CRFs with Non-Parametric Pairwise Potential

  • Authors:
  • Neill D. F. Campbell;Kartic Subr;Jan Kautz

  • Affiliations:
  • -;-;-

  • Venue:
  • CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conditional Random Fields (CRFs) are used for diverse tasks, ranging from image denoising to object recognition. For images, they are commonly defined as a graph with nodes corresponding to individual pixels and pairwise links that connect nodes to their immediate neighbors. Recent work has shown that fully-connected CRFs, where each node is connected to every other node, can be solved efficiently under the restriction that the pairwise term is a Gaussian kernel over a Euclidean feature space. In this paper, we generalize the pairwise terms to a non-linear dissimilarity measure that is not required to be a distance metric. To this end, we propose a density estimation technique to derive conditional pairwise potentials in a non-parametric manner. We then use an efficient embedding technique to estimate an approximate Euclidean feature space for these potentials, in which the pairwise term can still be expressed as a Gaussian kernel. We demonstrate that the use of non-parametric models for the pairwise interactions, conditioned on the input data, greatly increases expressive power whilst maintaining efficient inference.