There is more consensus in Egalitarian parliaments

  • Authors:
  • Iulian Moraru;David G. Andersen;Michael Kaminsky

  • Affiliations:
  • Carnegie Mellon University and Intel Labs;Carnegie Mellon University and Intel Labs;Carnegie Mellon University and Intel Labs

  • Venue:
  • Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes the design and implementation of Egalitarian Paxos (EPaxos), a new distributed consensus algorithm based on Paxos. EPaxos achieves three goals: (1) optimal commit latency in the wide-area when tolerating one and two failures, under realistic conditions; (2) uniform load balancing across all replicas (thus achieving high throughput); and (3) graceful performance degradation when replicas are slow or crash. Egalitarian Paxos is to our knowledge the first protocol to achieve the previously stated goals efficiently---that is, requiring only a simple majority of replicas to be non-faulty, using a number of messages linear in the number of replicas to choose a command, and committing commands after just one communication round (one round trip) in the common case or after at most two rounds in any case. We prove Egalitarian Paxos's properties theoretically and demonstrate its advantages empirically through an implementation running on Amazon EC2.