Parallel flow-sensitive pointer analysis by graph-rewriting

  • Authors:
  • Vaivaswatha Nagaraj;R. Govindarajan

  • Affiliations:
  • Indian Institute of Science, Bangalore, India;Indian Institute of Science, Bangalore, India

  • Venue:
  • PACT '13 Proceedings of the 22nd international conference on Parallel architectures and compilation techniques
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Precise pointer analysis is a problem of interest to both the compiler and the program verification community. Flow-sensitivity is an important dimension of pointer analysis that affects the precision of the final result computed. Scaling flow-sensitive pointer analysis to millions of lines of code is a major challenge. Recently, staged flow-sensitive pointer analysis has been proposed, which exploits a sparse representation of program code created by staged analysis. In this paper we formulate the staged flow-sensitive pointer analysis as a graph-rewriting problem. Graph-rewriting has already been used for flow-insensitive analysis. However, formulating flow-sensitive pointer analysis as a graph-rewriting problem adds additional challenges due to the nature of flow-sensitivity. We implement our parallel algorithm using Intel Threading Building Blocks and demonstrate considerable scaling (upto 2.6x) for 8 threads on a set of 10 benchmarks. Compared to the sequential implementation of staged flow-sensitive analysis, a single threaded execution of our implementation performs better in 8 of the benchmarks.