Experimental analysis of attacks on next generation air traffic communication

  • Authors:
  • Matthias Schäfer;Vincent Lenders;Ivan Martinovic

  • Affiliations:
  • TU Kaiserslautern, Germany;Armasuisse, Switzerland;University of Oxford, UK

  • Venue:
  • ACNS'13 Proceedings of the 11th international conference on Applied Cryptography and Network Security
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This work studies the security of next generation air traffic surveillance technology based on Automatic Dependent Surveillance --- Broadcast (ADS-B). ADS-B is already supported by a majority of international aircraft and will become mandatory in 2020 for most airspaces worldwide. While it is known that ADS-B might be susceptible to different spoofing attacks, the complexity and impact of launching these attacks has been debated controversially by the air traffic control community. Yet, the literature remains unclear on the requirements of launching ADS-B attacks in real-world environments, and on the constraints which affect their feasibility. In this paper, we take a scientific approach to systematically evaluate realistic ADS-B attacks. Our objective is to shed light on the practicability of different threats and to quantify the main factors that impact the success of such attacks. Our results reveal some bad news: attacks on ADS-B can be inexpensive and highly successful. Using a controlled experimental design, we offer insights from a real-world feasibility analysis that leads to the conclusion that any safety-critical air traffic decision process should not rely exclusively on the ADS-B system.