A parallel software infrastructure for structured adaptive mesh methods

  • Authors:
  • Scott R. Kohn;Scott B. Baden

  • Affiliations:
  • Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA;Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA

  • Venue:
  • Supercomputing '95 Proceedings of the 1995 ACM/IEEE conference on Supercomputing
  • Year:
  • 1995

Quantified Score

Hi-index 0.00

Visualization

Abstract

Structured adaptive mesh algorithms dynamically allocate computational resources to accurately resolve interesting portions of a numerical calculation. Such methods are difficult to implement and parallelize because they rely on dynamic, irregular data structures. We have developed an efficient, portable, parallel software infrastructure for adaptive mesh methods; our software provides computational scientists with high-level facilities that hide low-level details of parallelism and resource management. We have applied our software infrastructure to the solution of adaptive eigenvalue problems arising in materials design. We describe our software infrastructure and analyze its performance. We also present computational results which indicate that the uniformity restrictions imposed by a data parallel Fortran implementation of a structured adaptive mesh application would significantly impact performance.