Neuron as a reward-modulated combinatorial switch and a model of learning behavior

  • Authors:
  • Marat M. Rvachev

  • Affiliations:
  • -

  • Venue:
  • Neural Networks
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a neuronal circuitry layout and synaptic plasticity principles that allow the (pyramidal) neuron to act as a ''combinatorial switch''. Namely, the neuron learns to be more prone to generate spikes given those combinations of firing input neurons for which a previous spiking of the neuron had been followed by a positive global reward signal. The reward signal may be mediated by certain modulatory hormones or neurotransmitters, e.g., the dopamine. More generally, a trial-and-error learning paradigm is suggested in which a global reward signal triggers long-term enhancement or weakening of a neuron's spiking response to the preceding neuronal input firing pattern. Thus, rewards provide a feedback pathway that informs neurons whether their spiking was beneficial or detrimental for a particular input combination. The neuron's ability to discern specific combinations of firing input neurons is achieved through a random or predetermined spatial distribution of input synapses on dendrites that creates synaptic clusters that represent various permutations of input neurons. The corresponding dendritic segments, or the enclosed individual spines, are capable of being particularly excited, due to local sigmoidal thresholding involving voltage-gated channel conductances, if the segment's excitatory and absence of inhibitory inputs are temporally coincident. Such nonlinear excitation corresponds to a particular firing combination of input neurons, and it is posited that the excitation strength encodes the combinatorial memory and is regulated by long-term plasticity mechanisms. It is also suggested that the spine calcium influx that may result from the spatiotemporal synaptic input coincidence may cause the spine head actin filaments to undergo mechanical (muscle-like) contraction, with the ensuing cytoskeletal deformation transmitted to the axon initial segment where it may modulate the global neuron firing threshold. The tasks of pattern classification and generalization are discussed within the presented framework.