Performance of the Latest Generation Powerline Networking for Green Building Applications

  • Authors:
  • Nirmalya Roy;David Kleinschmidt;Joseph Taylor;Behrooz Shirazi

  • Affiliations:
  • Information Systems, University of Maryland Baltimore County;Bonneville Power Administration, U.S. Department of Energy (DOE);Electrical Engineering & Computer Science, Washington State University;Electrical Engineering and Computer Science, Washington State University

  • Venue:
  • Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Green building applications need to efficiently communicate fine-grained power consumption patterns of a wide variety of consumer-grade appliances for an effective adaptation and percolation of demand response models in the home environment. A key hurdle to the widespread adoption of such demand response policies in these appliances is the lack of efficient connectivity to a local area network. One solution is delivering telemetry data over existing electrical infrastructure to which the devices are already connected. The use of existing wiring produces a simple and cost-effective solution, avoiding many issues observed with wireless mesh networks (such as islands and bottlenecks), while helping to vacate increasingly congested spectrum. In this paper we explore the feasibility and efficacy of Power-line Communications (PLC) as a backbone of wireless communications in a home environment. We evaluate the behavior of several state-of-the art PLC modems using end-to-end measurements to establish their performance and throughput characteristics. Our preliminary results suggest that PLC is a promising technology for low-bandwidth hungry green building applications but more in depth study is required before making large-scale smart grid deployment.