Safety verification of asynchronous pushdown systems with shaped stacks

  • Authors:
  • Jonathan Kochems;C. -H. Luke Ong

  • Affiliations:
  • University of Oxford, UK;University of Oxford, UK

  • Venue:
  • CONCUR'13 Proceedings of the 24th international conference on Concurrency Theory
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we study the program-point reachability problem of concurrent pushdown systems that communicate via unbounded and unordered message buffers. Our goal is to relax the common restriction that messages can only be retrieved by a pushdown process when its stack is empty. We use the notion of partially commutative context-free grammars to describe a new class of asynchronously communicating pushdown systems with a mild shape constraint on the stacks for which the program-point coverability problem remains decidable. Stacks that fit the shape constraint may reach arbitrary heights; further a process may execute any communication action (be it process creation, message send or retrieval) whether or not its stack is empty. This class extends previous computational models studied in the context of asynchronous programs, and enables the safety verification of a large class of message passing programs.