An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings

  • Authors:
  • M. V. Moreno-Cano;M. A. Zamora-Izquierdo;José Santa;Antonio F. Skarmeta

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Neurocomputing
  • Year:
  • 2013

Quantified Score

Hi-index 0.01

Visualization

Abstract

Smart Buildings aim to provide users with seamless, invisible and proactive services adapted to their preferences and needs. These services can be offered intelligently by means of considering the static and dynamical status of the building and the location of its occupants. Furthermore, gathering data about the identity and location of users enables to provide more personalized services, while wasted energy in overuse is reduced. But to cope with these objectives, it is necessary to acquire contextual information, both from users and the environment, using nonintrusive, ubiquitous and cheap technologies. In this work, we propose a low-cost and nonintrusive solution to solve the indoor localization problem focused on satisfying the requirements, in terms of accuracy in localization data, to provide customized comfort services in buildings, such as climate and lighting control, or security, with the goal of ensuring users comfort while saving energy. The proposed localization system is based on RFID (Radio-Frequency Identification) and IR (Infra-Red) data. The solution implements a Radial Basis Function Network to estimate the location of occupants, and a Particle Filter to track their next positions. This mechanism has been tested in a reference building where an automation system for collecting data and controlling devices has been setup. Results obtained from experimental assessments reveal that, despite our localization system uses a relative low number of sensors, estimated positions are really accurate considering the requirements of precision to provide user-oriented pervasive services in buildings.