Self-organizing maps for the design of multiple description vector quantizers

  • Authors:
  • Giovanni Poggi;Davide Cozzolino;Luisa Verdoliva

  • Affiliations:
  • -;-;-

  • Venue:
  • Neurocomputing
  • Year:
  • 2013

Quantified Score

Hi-index 0.01

Visualization

Abstract

Multiple description coding is an appealing tool to guarantee graceful signal degradation in the presence of unreliable channels. While the principles of multiple description scalar quantization are well-understood and solid guidelines exist to design effective systems, the same does not hold for vector quantization, especially at low bit-rates, where burdensome and unsatisfactory design techniques discourage its use altogether in applications. In this work we use the self-organizing maps to design multiple description VQ codebooks. The proposed algorithm is flexible, fast and effective: it deals easily with a large variety of situations, including the case of more than two descriptions, with a computational complexity that remains fully affordable even for large codebooks, and a performance comparable to that of reference techniques. A thorough experimental analysis, conducted in a wide range of operating conditions, proves the proposed technique to perform on par with well-known reference methods based on greedy optimization, but with a much lower computational burden. In addition, the resulting codebook can be itself optimized, thus providing even better performance. All experiments are fully reproducible, with all software and data available online for the interested researchers.