Now or later?: delaying data transfer in time-critical aerial communication

  • Authors:
  • Mahdi Asadpour;Domenico Giustiniano;Karin Anna Hummel;Simon Heimlicher;Simon Egli

  • Affiliations:
  • ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland;Communication Systems Group, Zurich, Switzerland

  • Venue:
  • Proceedings of the ninth ACM conference on Emerging networking experiments and technologies
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Search and rescue missions are entering a new era with the advent of small scale unmanned aerial vehicles (UAVs) with communication capabilities and embedded cameras. Yet, delivering high resolution images of the supervised surface to rescuers is time-critical. To help resolving this problem, we study how UAVs can take advantage of their controlled mobility to derive the optimum strategy for data transmission. Driven by real-world aerial experiments with both airplanes and quadrocopters equipped with 802.11n technology, we show that the UAV should not necessarily transmit as soon as a wireless link is established. Instead, it should wait until it reaches a suitable distance to the receiving UAV, only to transmit when the time to move to the new location and transmit is minimal. We then apply the principle of delayed gratification, where the UAV attempts to solve the tradeoff between postponing until it reaches this minimum and the impatience to deliver as much data as soon as possible, before any physical damage on-the-fly may occur. Our empirical-driven simulations demonstrate that the optimal distance of transmission greatly depends on the interplay of actual throughput, data size, UAV cruise speed, and failure rate, and that state-of-the-art UAVs can already benefit from our approach.