Tensor-Rank and Lower Bounds for Arithmetic Formulas

  • Authors:
  • Ran Raz

  • Affiliations:
  • Weizmann Institute

  • Venue:
  • Journal of the ACM (JACM)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We show that any explicit example for a tensor A : [n]r → F with tensor-rank ≥ nrċ(1−o(1)), where r = r(n) ≤ log n/log log n is super-constant, implies an explicit super-polynomial lower bound for the size of general arithmetic formulas over F. This shows that strong enough lower bounds for the size of arithmetic formulas of depth 3 imply super-polynomial lower bounds for the size of general arithmetic formulas. One component of our proof is a new approach for homogenization and multilinearization of arithmetic formulas, that gives the following results: We show that for any n-variate homogeneous polynomial f of degree r, if there exists a (fanin-2) formula of size s and depth d for f then there exists a homogeneous formula of size O((d+r+1 r) ċ s) for f. In particular, for any r ≤ O(log n), if there exists a polynomial size formula for f then there exists a polynomial size homogeneous formula for f. This refutes a conjecture of Nisan and Wigderson [1996] and shows that super-polynomial lower bounds for homogeneous formulas for polynomials of small degree imply super-polynomial lower bounds for general formulas. We show that for any n-variate set-multilinear polynomial f of degree r, if there exists a (fanin-2) formula of size s and depth d for f, then there exists a set-multilinear formula of size O((d + 2)r ċ s) for f. In particular, for any r ≤ O(log n/log log n), if there exists a polynomial size formula for f then there exists a polynomial size set-multilinear formula for f. This shows that super-polynomial lower bounds for set-multilinear formulas for polynomials of small degree imply super-polynomial lower bounds for general formulas.