Query optimization over crowdsourced data

  • Authors:
  • Hyunjung Park;Jennifer Widom

  • Affiliations:
  • Stanford University;Stanford University

  • Venue:
  • Proceedings of the VLDB Endowment
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deco is a comprehensive system for answering declarative queries posed over stored relational data together with data obtained on-demand from the crowd. In this paper we describe Deco's cost-based query optimizer, building on Deco's data model, query language, and query execution engine presented earlier. Deco's objective in query optimization is to find the best query plan to answer a query, in terms of estimated monetary cost. Deco's query semantics and plan execution strategies require several fundamental changes to traditional query optimization. Novel techniques incorporated into Deco's query optimizer include a cost model distinguishing between "free" existing data versus paid new data, a cardinality estimation algorithm coping with changes to the database state during query execution, and a plan enumeration algorithm maximizing reuse of common subplans in a setting that makes reuse challenging. We experimentally evaluate Deco's query optimizer, focusing on the accuracy of cost estimation and the efficiency of plan enumeration.