Multi-agent compositional stability exploiting system symmetries

  • Authors:
  • Bill Goodwine;Panos Antsaklis

  • Affiliations:
  • -;-

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2013

Quantified Score

Hi-index 22.14

Visualization

Abstract

This paper considers nonlinear symmetric control systems. By exploiting the symmetric structure of the system, stability results are derived that are independent of the number of components in the system. This work contributes to the fields of research directed toward compositionality and composability of large-scale system in that a system can be ''built-up'' by adding components while maintaining system stability. The modeling framework developed in this paper is a generalization of many existing results which focus on interconnected systems with specific dynamics. The main utility of the stability result is one of scalability or compositionality. If the system is stable for a given number of components, under appropriate conditions stability is then guaranteed for a larger system composed of the same type of components which are interconnected in a manner consistent with the smaller system. The results are general and applicable to a wide class of problems. The examples in this paper focus on the formation control problems for multi-agent robotic systems.