Semi-supervised clustering via multi-level random walk

  • Authors:
  • Ping He;Xiaohua Xu;Kongfa Hu;Ling Chen

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Pattern Recognition
  • Year:
  • 2014

Quantified Score

Hi-index 0.01

Visualization

Abstract

A key issue of semi-supervised clustering is how to utilize the limited but informative pairwise constraints. In this paper, we propose a new graph-based constrained clustering algorithm, named SCRAWL. It is composed of two random walks with different granularities. In the lower-level random walk, SCRAWL partitions the vertices (i.e., data points) into constrained and unconstrained ones, according to whether they are in the pairwise constraints. For every constrained vertex, its influence range, or the degrees of influence it exerts on the unconstrained vertices, is encapsulated in an intermediate structure called component. The edge set between each pair of components determines the affecting scope of the pairwise constraints. In the higher-level random walk, SCRAWL enforces the pairwise constraints on the components, so that the constraint influence can be propagated to the unconstrained edges. At last, we combine the cluster membership of all the components to obtain the cluster assignment for each vertex. The promising experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our method.