Two families of approximations for the gamma function

  • Authors:
  • Lei Feng;Weiping Wang

  • Affiliations:
  • School of Science, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China 310018;School of Science, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China 310018

  • Venue:
  • Numerical Algorithms
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we establish two families of approximations for the gamma function:$$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$, $b$, $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes' formulae, which, to our knowledge, are better than other approximations in the literature.