Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking

  • Authors:
  • Christian Merkel;Christian M. Stoppel;Steven A. Hillyard;Hans-Jochen Heinze;Jens-Max Hopf;Mircea Ariel Schoenfeld

  • Affiliations:
  • -;-;-;-;-;-

  • Venue:
  • Journal of Cognitive Neuroscience
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Human observers can readily track up to four independently moving items simultaneously, even in the presence of moving distractors. Here we combined EEG and magnetoencephalography recordings to investigate the neural processes underlying this remarkable capability. Participants were instructed to track four of eight independently moving items for 3 sec. When the movement ceased a probe stimulus consisting of four items with a higher luminance was presented. The location of the probe items could correspond fully, partly, or not at all with the tracked items. Participants reported whether the probe items fully matched the tracked items or not. About half of the participants showed slower RTs and higher error rates with increasing correspondence between tracked items and the probe. The other half, however, showed faster RTs and lower error rates when the probe fully matched the tracked items. This latter behavioral pattern was associated with enhanced probe-evoked neural activity that was localized to the lateral occipital cortex in the time range 170-210 msec. This enhanced response in the object-selective lateral occipital cortex suggested that these participants performed the tracking task by visualizing the overall shape configuration defined by the vertices of the tracked items, thereby producing a behavioral advantage on full-match trials. In a later time range 270-310 msec probe-evoked neural activity increased monotonically as a function of decreasing target-probe correspondence in all participants. This later modulation, localized to superior parietal cortex, was proposed to reflect the degree of mismatch between the probe and the automatically formed visual STM representation of the tracked items.