A collisions evaluation method in virtual environment for collaborativeassembly

  • Authors:
  • Jiancheng Shi;Jianhua Liu;Ruxin Ning;Weiwei Hou

  • Affiliations:
  • School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

  • Venue:
  • Journal of Network and Computer Applications
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Collision detection is critical for collaborative assembly simulation to assist design processing. However, collisions between polygonal models may not reflect collisions between real objects in reality because of polygonal approximation and designed tolerance. This problem reduces the reliability of simulation in collaborative assembly and sometimes even results in wrong conclusions. To solve the problem, we propose a novel collision evaluation algorithm based on generalized penetration depth, approximation information, and tolerance information. Given two interfered polygonal models, generalized penetration depth is calculated using relative motion information. Then two thresholds, which are based on approximation information and tolerance information, are integrated to evaluate collisions between polygonal models. In order to distinguish the status of collisions for further analysis, the collisions between polygonal models are categorized into three types by evaluation algorithm, namely real collision, potential collision, and fake collision. Computational efficiency and accuracy of the evaluation algorithm are verified in a virtual collaborative assembly environment.