CrusDe: A plug-in based simulation framework for composable Crustal Deformation studies using Green's functions

  • Authors:
  • R. Grapenthin

  • Affiliations:
  • -

  • Venue:
  • Computers & Geosciences
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

CrusDe is a plug-in based simulation framework written in C/C++ for Linux platforms (installation information, download and test cases: http://www.grapenthin.org/crusde). It utilizes Green's functions for simulations of the Earth's response to changes in surface loads. Such changes could involve, for example, melting glaciers, oscillating snow loads, or lava flow emplacement. The focus in the simulation could be the response of the Earth's crust in terms of stress changes, changes in strain rates, or simply uplift or subsidence and the respective horizontal displacements of the crust (over time). Rather than implementing a variety of specific models, CrusDe approaches crustal deformation problems from a general formulation in which model elements (Green's function, load function, relaxation function, load history), operators, pre- and postprocessors, as well as input and output routines are independent, exchangeable, and reusable on the basis of a plug-in approach (shared libraries loaded at runtime). We derive the general formulation CrusDe is based on, describe its architecture and use, and demonstrate its capabilities in a test case. With CrusDe users can: (1) dynamically select software components to participate in a simulation (through XML experiment definitions), (2) extend the framework independently with new software components and reuse existing ones, and (3) exchange software components and experiment definitions with other users. CrusDe's plug-in mechanism aims for straightforward extendability allowing modelers to add new Earth models/response functions. Current Green's function implementations include surface displacements due to the elastic response, final relaxed response, and pure thick plate response for a flat Earth. These can be combined to express exponential decay from elastic to final relaxed response, displacement rates due to one or multiple disks, irregular loads, or a combination of these. Each load can have its own load history and crustal decay function.