Quantified Score

Hi-index 0.00

Visualization

Abstract

The progressive and iterative approximation (PIA) method is an efficient and intuitive method for data fitting. However, in the classical PIA method, the number of the control points is equal to that of the data points. It is not feasible when the number of data points is very large. In this paper, we develop a new progressive and iterative approximation for least square fitting (LSPIA). LSPIA constructs a series of fitting curves (surfaces) by adjusting the control points iteratively, and the limit curve (surface) is the least square fitting result to the given data points. In each iteration, the difference vector for each control point is a weighted sum of some difference vectors between the data points and their corresponding points on the fitting curve (surface). Moreover, we present a simple method to compute the practical weight whose corresponding convergence rate is comparable to that of the theoretical best weight. The advantages of LSPIA are two-fold. First, with LSPIA, a very large data set can be fitted efficiently and robustly. Second, in the incremental data fitting procedure with LSPIA, a new round of iterations can be started from the fitting result of the last round of iterations, thus saving great amount of computation. Lots of empirical examples illustrated in this paper show the efficiency and effectiveness of LSPIA.