The chain collocation method: A spectrally accurate calculus of forms

  • Authors:
  • Dzhelil Rufat;Gemma Mason;Patrick Mullen;Mathieu Desbrun

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2014

Quantified Score

Hi-index 31.45

Visualization

Abstract

Preserving in the discrete realm the underlying geometric, topological, and algebraic structures at stake in partial differential equations has proven to be a fruitful guiding principle for numerical methods in a variety of fields such as elasticity, electromagnetism, or fluid mechanics. However, structure-preserving methods have traditionally used spaces of piecewise polynomial basis functions for differential forms. Yet, in many problems where solutions are smoothly varying in space, a spectral numerical treatment is called for. In an effort to provide structure-preserving numerical tools with spectral accuracy on logically rectangular grids over periodic or bounded domains, we present a spectral extension of the discrete exterior calculus (DEC), with resulting computational tools extending well-known collocation-based spectral methods. Its efficient implementation using fast Fourier transforms is provided as well.