Computation of marginal likelihoods with data-dependent support for latent variables

  • Authors:
  • Sarah E. Heaps;Richard J. Boys;Malcolm Farrow

  • Affiliations:
  • -;-;-

  • Venue:
  • Computational Statistics & Data Analysis
  • Year:
  • 2014

Quantified Score

Hi-index 0.03

Visualization

Abstract

Several Monte Carlo methods have been proposed for computing marginal likelihoods in Bayesian analyses. Some of these involve sampling from a sequence of intermediate distributions between the prior and posterior. A difficulty arises if the support in the posterior distribution is a proper subset of that in the prior distribution. This can happen in problems involving latent variables whose support depends upon the data and can make some methods inefficient and others invalid. The correction required for models of this type is derived and its use is illustrated by finding the marginal likelihoods in two examples. One concerns a model for competing risks. The other involves a zero-inflated over-dispersed Poisson model for counts of centipedes, using latent Gaussian variables to capture spatial dependence.