Software reliability prediction model based on support vector regression with improved estimation of distribution algorithms

  • Authors:
  • Cong Jin;Shu-Wei Jin

  • Affiliations:
  • -;-

  • Venue:
  • Applied Soft Computing
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Software reliability prediction plays a very important role in the analysis of software quality and balance of software cost. The data during software lifecycle is used to analyze and predict software reliability. However, predicting the variability of software reliability with time is very difficult. Recently, support vector regression (SVR) has been widely applied to solve nonlinear predicting problems in many fields and has obtained good performance in many situations; however it is still difficult to optimize SVR's parameters. Previously, some optimization algorithms have been used to find better parameters of SVR, but these existing algorithms usually are not fully satisfactory. In this paper, we first improve estimation of distribution algorithms (EDA) in order to maintain the diversity of the population, and then a hybrid improved estimation of distribution algorithms (IEDA) and SVR model, called IEDA-SVR model, is proposed. IEDA is used to optimize parameters of SVR, and IEDA-SVR model is used to predict software reliability. We compare IEDA-SVR model with other software reliability models using real software failure datasets. The experimental results show that the IEDA-SVR model has better prediction performance than the other models.