Modeling variations in load intensity over time

  • Authors:
  • Jóakim v. Kistowski;Nikolas Roman Herbst;Samuel Kounev

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • Proceedings of the third international workshop on Large scale testing
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Today's software systems are expected to deliver reliable performance under highly variable load intensities while at the same time making efficient use of dynamically allocated resources. Conventional benchmarking frameworks provide limited support for emulating such highly variable and dynamic load profiles and workload scenarios. Industrial benchmarks typically use workloads with constant or stepwise increasing load intensity, or they simply replay recorded workload traces. Based on this observation, we identify the need for means allowing flexible definition of load profiles and address this by introducing two meta-models at different abstraction levels. At the lower abstraction level, the Descartes Load Intensity Meta-Model (DLIM) offers a structured and accessible way of describing the load intensity over time by editing and combining mathematical functions. The High-Level Descartes Load Intensity Meta-Model (HLDLIM) allows the description of load variations using few defined parameters that characterize the seasonal patterns, trends, bursts and noise parts. We demonstrate that both meta-models are capable of capturing real-world load profiles with acceptable accuracy through comparison with a real life trace.