Behavioral modeling and formal verification of a resource discovery approach in Grid computing

  • Authors:
  • Alireza Souri;Nima Jafari Navimipour

  • Affiliations:
  • -;-

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2014

Quantified Score

Hi-index 12.05

Visualization

Abstract

Grid computing is the federation of resources from multiple locations to facilitate resource sharing and problem solving over the Internet. The challenge of finding services or resources in Grid environments has recently been the subject of many papers and researches. These researches and papers evaluate their approaches only by simulation and experiments. Therefore, it is possible that some part of the state space of the problem is not analyzed and checked well. To overcome this defect, model checking as an automatic technique for the verification of the systems is a suitable solution. In this paper, an adopted type of resource discovery approach to address multi-attribute and range queries has been presented. Unlike the papers in this scope, this paper decouple resource discovery behavior model to data gathering, discovery and control behavior. Also it facilitates the mapping process between three behaviors by means of the formal verification approach based on Binary Decision Diagram (BDD). The formal approach extracts the expected properties of resource discovery approach from control behavior in the form of CTL and LTL temporal logic formulas, and verifies the properties in data gathering and discovery behaviors comprehensively. Moreover, analyzing and evaluating the logical problems such as soundness, completeness, and consistency of the considered resource discovery approach is provided. To implement the behavior models of resource discovery approach the ArgoUML tool and the NuSMV model checker are employed. The results show that the adopted resource discovery approach can discovers multi-attribute and range queries very fast and detects logical problems such as soundness, completeness, and consistency.