On the effective accuracy of spectral-like optimized finite-difference schemes for computational aeroacoustics

  • Authors:
  • G. Cunha;S. Redonnet

  • Affiliations:
  • -;-

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2014

Quantified Score

Hi-index 31.45

Visualization

Abstract

The present article aims at highlighting the strengths and weaknesses of the so-called spectral-like optimized (explicit central) finite-difference schemes, when the latter are used for numerically approximating spatial derivatives in aeroacoustics evolution problems. With that view, we first remind how differential operators can be approximated using explicit central finite-difference schemes. The possible spectral-like optimization of the latter is then discussed, the advantages and drawbacks of such an optimization being theoretically studied, before they are numerically quantified. For doing so, two popular spectral-like optimized schemes are assessed via a direct comparison against their standard counterparts, such a comparative exercise being conducted for several academic test cases. At the end, general conclusions are drawn, which allows us discussing the way spectral-like optimized schemes shall be preferred (or not) to standard ones, when it comes to simulate real-life aeroacoustics problems.