SAR image segmentation based on quantum-inspired multiobjective evolutionary clustering algorithm

  • Authors:
  • Yangyang Li;Shixia Feng;Xiangrong Zhang;Licheng Jiao

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Information Processing Letters
  • Year:
  • 2014

Quantified Score

Hi-index 0.89

Visualization

Abstract

The segmentation task in the feature space of an image can be formulated as an optimization problem. Recent researches have demonstrated that the clustering techniques, using only one objective may not obtain suitable solution because the single objective function just can provide satisfactory result to one kind of corresponding data set. In this letter, a novel multiobjective clustering approach, named a quantum-inspired multiobjective evolutionary clustering algorithm (QMEC), is proposed to deal with the problem of image segmentation, where two objectives are simultaneously optimized. Based on the concepts and principles of quantum computing, the multi-state quantum bits are used to represent individuals and quantum rotation gate strategy is used to update the probabilistic individuals. The proposed algorithm can take advantage of the multiobjective optimization mechanism and the superposition of quantum states, and therefore it has a good population diversity and search capabilities. Due to a set of nondominated solutions in multiobjective clustering problems, a simple heuristic method is adopted to select a preferred solution from the final Pareto front and the results show that a good image segmentation result is selected. Experiments on one simulated synthetic aperture radar (SAR) image and two real SAR images have shown the superiority of the QMEC over three other known algorithms.