A Characterization Theorem for the Alternation-Free Fragment of the Modal µ-Calculus

  • Authors:
  • Alessandro Facchini;Yde Venema;Fabio Zanasi

  • Affiliations:
  • -;-;-

  • Venue:
  • LICS '13 Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We provide a characterization theorem, in the style of van Ben them and Janin-Walukiewicz, for the alternation-free fragment of the modal mu-calculus. For this purpose we introduce a variant of standard monadic second-order logic (MSO), which we call well-founded monadic second-order logic (WFMSO). When interpreted in a tree model, the second-order quantifiers of WFMSO range over subsets of conversely well-founded sub trees. The first main result of the paper states that the expressive power of WFMSO over trees exactly corresponds to that of weak MSO-automata. Using this automata-theoretic characterization, we then show that, over the class of all transition structures, the bisimulation-invariant fragment of WFMSO is the alternation-free fragment of the modal mu-calculus. As a corollary, we find that the logics WFMSO and WMSO (weak monadic second-order logic, where second-order quantification concerns finite subsets), are incomparable in expressive power.