High capacity wireless multimedia transmission with unequal error protection over Rayleigh fading channel

  • Authors:
  • Walid A. Al-Hussaibi

  • Affiliations:
  • Ministry of Higher Education and Scientific Research, Baghdad, Iraq

  • Venue:
  • Wireless Networks
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Efficient use of the available bandwidth and power resources for real-time multimedia transmission with high data rate and quality of service guarantee is one of the main challenges for next generation wireless systems. In image and video applications, the reception quality is highly sensitive to transmission delay, data loss, and error performance. Therefore, feasible transmission techniques over realistic channel conditions and detection methods are required to meet the increasing demands of multimedia services. In this paper, adaptive real-time communication (ARTC) system based superposition coding and layered detection is proposed for higher capacity visual data transmission over Rayleigh fading channel with unequal error protection (UEP). In the transmitter side, the source data is splitted into two streams depending on their importance, high priority and low priority. These two bit streams are modulated individually using different adjustable power allocation ratio according to partial feedback of channel state information with a constraint of total transmitted power during every symbol period. The received signal is detected using low complexity layered receiver with successive interference cancellation. To evaluate the system performance, constellation constrained capacity formula is derived. Under same resources of bandwidth, power, and time, extensive simulation results demonstrate the effectiveness of proposed ARTC scheme and shows significant improvement in capacity and bit-error-rate compared with the conventional direct single stream transmission and hierarchical modulation. Furthermore, the unequal importance characteristics of visual data are well exploited to attain reliable communication with UEP property.