Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks

  • Authors:
  • Jiwei Zhang;Katherine Newhall;Douglas Zhou;Aaditya Rangan

  • Affiliations:
  • Courant Institute of Mathematical Sciences, New York University, New York, USA;Courant Institute of Mathematical Sciences, New York University, New York, USA;Department of Mathematics, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China 200240;Courant Institute of Mathematical Sciences, New York University, New York, USA

  • Venue:
  • Journal of Computational Neuroscience
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous "multiple firing events" (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population---based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.