A clonal selection based approach to statistical brain voxel classification in magnetic resonance images

  • Authors:
  • Tong Zhang;Yong Xia;David Dagan Feng

  • Affiliations:
  • -;-;-

  • Venue:
  • Neurocomputing
  • Year:
  • 2014

Quantified Score

Hi-index 0.01

Visualization

Abstract

Statistical classification of voxels in brain magnetic resonance (MR) images into major tissue types plays an important role in neuroscience research and clinical practices, in which model estimation is an essential step. Despite their prevalence, traditional techniques, such as the expectation-maximization (EM) algorithm and genetic algorithm (GA), have inherent limitations, and may result in less-accurate classification. In this paper, we introduce the immune-inspired clonal selection algorithm (CSA) to the maximum likelihood estimation of the Gaussian mixture model (GMM), and thus propose the GMM-CSA algorithm for automated voxel classification in brain MR images. This algorithm achieves simultaneous voxel classification and bias field correction in a three-stage iterative process under the CSA framework. At each iteration, a population of admissible model parameters, voxel labels and estimated bias field are updated. To explore the prior anatomical knowledge, we also construct a probabilistic brain atlas for each MR study and incorporate the atlas into the classification process. The GMM-CSA algorithm has been compared to five state-of-the-art brain MR image segmentation approaches on both simulated and clinical data. Our results show that the proposed algorithm is capable of classifying voxels in brain MR images into major tissue types more accurately.