Synthetic brainbows

  • Authors:
  • Y. Wan;H. Otsuna;C. Hansen

  • Affiliations:
  • University of Utah;University of Utah;University of Utah

  • Venue:
  • EuroVis '13 Proceedings of the 15th Eurographics Conference on Visualization
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffling and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.