MICA: a holistic approach to fast in-memory key-value storage

  • Authors:
  • Hyeontaek Lim;Dongsu Han;David G. Andersen;Michael Kaminsky

  • Affiliations:
  • Carnegie Mellon University;KAIST;Carnegie Mellon University;Intel Labs

  • Venue:
  • NSDI'14 Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

MICA is a scalable in-memory key-value store that handles 65.6 to 76.9 million key-value operations per second using a single general-purpose multi-core system. MICA is over 4-13.5x faster than current state-of-the-art systems, while providing consistently high throughput over a variety of mixed read and write workloads. MICA takes a holistic approach that encompasses all aspects of request handling, including parallel data access, network request handling, and data structure design, but makes unconventional choices in each of the three domains. First, MICA optimizes for multi-core architectures by enabling parallel access to partitioned data. Second, for efficient parallel data access, MICA maps client requests directly to specific CPU cores at the server NIC level by using client-supplied information and adopts a light-weight networking stack that bypasses the kernel. Finally, MICA's new data structures--circular logs, lossy concurrent hash indexes, and bulk chaining--handle both read-and write-intensive workloads at low overhead.