Web server workload characterization: the search for invariants

  • Authors:
  • Martin F. Arlitt;Carey L. Williamson

  • Affiliations:
  • Department of Computer Science, University of Saskatchewan;Department of Computer Science, University of Saskatchewan

  • Venue:
  • Proceedings of the 1996 ACM SIGMETRICS international conference on Measurement and modeling of computer systems
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

The phenomenal growth in popularity of the World Wide Web (WWW, or the Web) has made WWW traffic the largest contributor to packet and byte traffic on the NSFNET backbone. This growth has triggered recent research aimed at reducing the volume of network traffic produced by Web clients and servers, by using caching, and reducing the latency for WWW users, by using improved protocols for Web interaction.Fundamental to the goal of improving WWW performance is an understanding of WWW workloads. This paper presents a workload characterization study for Internet Web servers. Six different data sets are used in this study: three from academic (i.e., university) environments, two from scientific research organizations, and one from a commercial Internet provider. These data sets represent three different orders of magnitude in server activity, and two different orders of magnitude in time duration, ranging from one week of activity to one year of activity.Throughout the study, emphasis is placed on finding workload invariants: observations that apply across all the data sets studied. Ten invariants are identified. These invariants are deemed important since they (potentially) represent universal truths for all Internet Web servers. The paper concludes with a discussion of caching and performance issues, using the invariants to suggest performance enhancements that seem most promising for Internet Web servers.