A New HAD Algorithm for Optimal Routing of Hierarchically Structured Data Networks

  • Authors:
  • Garng M. Huang;Shan Zhu

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a new algorithm based on hierarchical aggregation/disaggregation and decomposition/composition (HAD) scheme is proposed to solve the optimal routing problems (ORP) for hierarchically structured networks of multi-layer backbones. Our algorithm has two major differences with the existing HAD algorithms for hierarchically clustered networks [1], [2]: 1) our algorithm works with more general networks than the networks with the clustered structure; 2) our algorithm parallelizes the computations for different commodities (message flows defined by a pair of origin node and destination node) so that it speeds up with a parallel time complexity of O(mlog2(n)), which is much less than O(Mlog2(n)) needed for the existing HAD algorithms. Here, n is the number of nodes in the network; M is the number of commodities and m is a positive number usually much smaller than M and is a function of the patterns of all the commodities including the locations of all origin nodes and destination nodes, and the flow demand of each commodity. Furthermore, our algorithm can make a trade-off between the run time and the optimality, i.e., by allowing the solution to be sub-optimal, our algorithm can save great amount of computation time. The implementation of the algorithm for a 200-node network is simulated using OPNET simulation package (OPNET or Optimized Network Engineering Tools is developed by MIL3, Inc.), and the test results are consistent with our analysis.