A channel access scheme for large dense packet radio networks

  • Authors:
  • Timothy J. Shepard

  • Affiliations:
  • BBN Systems and Technologies, 10 Moulton Street, Cambridge, MA

  • Venue:
  • Conference proceedings on Applications, technologies, architectures, and protocols for computer communications
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

Prior work in the field of packet radio networks has often assumed a simple success-if-exclusive model of successful reception. This simple model is insufficient to model interference in large dense packet radio networks accurately. In this paper we present a model that more closely approximates communication theory and the underlying physics of radio communication. Using this model we present a decentralized channel access scheme for scalable packet radio networks that is free of packet loss due to collisions and that at each hop requires no per-packet transmissions other than the single transmission used to convey the packet to the next-hop station. We also show that with a modest fraction of the radio spectrum, pessimistic assumptions about propagation resulting in maximum-possible self-interference, and an optimistic view of future signal processing capabilities that a self-organizing packet radio network may scale to millions of stations within a metro area with raw per-station rates in the hundreds of megabits per second.