Modeling TCP throughput: a simple model and its empirical validation

  • Authors:
  • Jitendra Padhye;Victor Firoiu;Don Towsley;Jim Kurose

  • Affiliations:
  • Department of Computer Science, University of Massachusetts, Amherst, MA;Department of Computer Science, University of Massachusetts, Amherst, MA;Department of Computer Science, University of Massachusetts, Amherst, MA;Department of Computer Science, University of Massachusetts, Amherst, MA

  • Venue:
  • Proceedings of the ACM SIGCOMM '98 conference on Applications, technologies, architectures, and protocols for computer communication
  • Year:
  • 1998

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper we develop a simple analytic characterization of the steady state throughput, as a function of loss rate and round trip time for a bulk transfer TCP flow, i.e., a flow with an unlimited amount of data to send. Unlike the models in [6, 7, 10], our model captures not only the behavior of TCP's fast retransmit mechanism (which is also considered in [6, 7, 10]) but also the effect of TCP's timeout mechanism on throughput. Our measurements suggest that this latter behavior is important from a modeling perspective, as almost all of our TCP traces contained more time-out events than fast retransmit events. Our measurements demonstrate that our model is able to more accurately predict TCP throughput and is accurate over a wider range of loss rates.