Exponential Integrators for Large Systems of Differential Equations

  • Authors:
  • Marlis Hochbruck;Christian Lubich;Hubert Selhofer

  • Affiliations:
  • -;-;-

  • Venue:
  • SIAM Journal on Scientific Computing
  • Year:
  • 1998

Quantified Score

Hi-index 0.05

Visualization

Abstract

We study the numerical integration of large stiff systems of differential equations by methods that use matrix--vector products with the exponential or a related function of the Jacobian. For large problems, these can be approximated by Krylov subspace methods, which typically converge faster than those for the solution of the linear systems arising in standard stiff integrators. The exponential methods also offer favorable properties in the integration of differential equations whose Jacobian has large imaginary eigenvalues. We derive methods up to order 4 which are exact for linear constant-coefficient equations. The implementation of the methods is discussed. Numerical experiments with reaction-diffusion problems and a time-dependent Schrödinger equation are included.