Efficient algorithms for bidirectional debugging

  • Authors:
  • Bob Boothe

  • Affiliations:
  • Computer Science Dept., University of Southern Maine, Portland, ME

  • Venue:
  • PLDI '00 Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper discusses our research into algorithms for creating anefficient bidirectional debugger in which all traditional forward movement commands can be performed with equal ease in the reverse direction. We expect that adding these backwards movement capabilities to a debugger will greatly increase its efficacy as a programming tool.The efficiency of our methods arises from our use of event countersthat are embedded into the program being debugged. These counters areused to precisely identify the desired target event on the fly as thetarget program executes. This is in contrast to traditional debuggers that may trap back to the debugger many times for some movements. For reverse movements we re-execute the program (possibly using two passes) to identify and stop at the desired earlier point. Our counter based techniques are essential for these reverse movements because they allow us to efficiently execute through the millions of events encountered during re-execution.Two other important components of this debugger are its I/O logging and checkpointing. We log and later replay the results of system callsto ensure deterministic re-execution, and we use checkpointing to bound theamount of re-execution used for reverse movements. Short movements generally appear instantaneous, and the time for longer movements is usually bounded within a small constant factor of the temporal distance moved back.