Binary Space Partitions for Fat Rectangles

  • Authors:
  • Pankaj K. Agarwal;Edward F. Grove;T. M. Murali;Jeffrey Scott Vitter

  • Affiliations:
  • -;-;-;-

  • Venue:
  • SIAM Journal on Computing
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the practical problem of constructing binary space partitions (BSPs) for a set S of n orthogonal, nonintersecting, two-dimensional rectangles in ${\Bbb R}^3$ such that the aspect ratio of each rectangle in $S$ is at most $\alpha$, for some constant $\alpha \geq 1$. We present an $n2^{O(\sqrt{\log n})}$-time algorithm to build a binary space partition of size $n2^{O(\sqrt{\log n})}$ for $S$. We also show that if $m$ of the $n$ rectangles in $S$ have aspect ratios greater than $\alpha$, we can construct a BSP of size $n\sqrt{m}2^{O(\sqrt{\log n})}$ for $S$ in $n\sqrt{m}2^{O(\sqrt{\log n})}$ time. The constants of proportionality in the big-oh terms are linear in $\log \alpha$. We extend these results to cases in which the input contains nonorthogonal or intersecting objects.